Deflationism and the Generalization Problem
James A. Woodbridge

Introduction
My topic is a central logical problem facing deflationary accounts of truth, and the failures of the three best-known versions of deflationism (Paul Horwich’s Minimal Theory, Robert Brandom’s version of Prosententialism, and Hartry Field’s Pure Disquotationalism) in dealing with this problem.1 Deflationists about truth typically emphasize the logical functioning of the truth-predicate, claiming that this logical role fully explains and vindicates the notion of truth. It is interesting, then, that one of the greatest threats to deflationary views is the problem of accounting for the very generalizing role they stress as truth’s central function. I will first discuss what the current formulations of deflationism say about truth’s generalizing role and explain their inadequacies. I will then sketch a new formulation of deflationism that avoids the problems these views face in accounting for this role.

1. The generalization problem
The generalizing role deflationists emphasize is the one at work in using a truth-predicate to form what Hartry Field calls “fertile generalizations” from complex claims that do not involve the notion of truth, for example, in generalizing on the embedded sentences in

(1) If Corey says that crabapples are edible, then crabapples are edible.

The problem, however, is how to deal with the second, unnominalized sentence-position. We cannot generalize on it directly, as the following mock attempt shows.

(2) For everything (sayable), if Corey says it, then... then what? ...it?

The consequent of the generalization we want should be some sort of variable sentence-in-use – some natural-language rendering of ‘then p’. As a natural-language object variable, the pronoun ‘it’ does not work, nor does any other atomic natural-language expression.

Enter the truth-predicate. Its use provides something equivalent to a variable sentence, as revealed in the equivalence schema governing the notion of truth,

\[(ES) \text{ It is true that } p \iff p \text{ (} \sim \text{That } p \text{ is true iff } p)\].

(ES) show that application of the truth-predicate turns a sentence nominalization – something that the pronoun ‘it’ could replace – into something the use of which is equivalent to a use of that sentence. Thus, making ‘it is true’ the consequent of our generalization provides something equivalent to a sentence variable, while still employing an object variable that the quantifier can bind. The result, of course, is

\[(3) \text{ For everything (sayable), if Corey says it, then it is true,}\]

or, more colloquially,

\[(3') \text{ Everything Corey says is true.}\]

Inflationary views postulating substantive-property attribution have no difficulty explaining how the predicate ‘is true’ functions in generalizations like (3). The challenge for deflationists is to give an adequate account of the truth-predicate’s generalizing role while adhering to deflationary principles. Anil Gupta has pressed this problem, now often called the generalization problem, in criticisms of Horwich’s Minimal Theory (MT) and disquotation accounts of truth.² He claims that all these views provide are anemic substitutes for genuine generalizations. MT accounts only for each instance of a generalization formed with a truth-predicate, or perhaps some sort of “collection” of these instances. The most that disquotational views can provide is a conjunction of all these instances at once, since disquotationalists understand the truth-predicate as just a device of infinite conjunction (and disjunction). In neither case do we get what we want, since there is a difference between a genuine generalization and even a conjunction of all of its instances.

They differ mainly in logical strength; the generalization entails the (collection of) instances but not vice-versa. For example, given that all of my departmental colleagues have children, it follows that Laura has children if she is my departmental colleague, and Paul has children if he is my departmental colleague, and George has children if he is my departmental colleague. However, given these three conditionals, it does not follow that all my departmental colleagues have children. Establishing that conclusion requires the additional premise that all of my departmental colleagues are Laura, George, or Paul. Adding the latter claim closes the logical gap, but of course the added claim is itself a generalization.

This difference in logical strength leads to a difference in explanatory power. If you explain a generalization you thereby explain each of its instances. However, explaining each of these instances might not explain the generalization – the latter might have no explanation, being true just accidentally.³ A generalization can unify many different explananda under a single explanation; a collection of the instances produces no such unity. Furthermore, as a universal claim a generalization automatically applies to any new cases generated or discovered. In contrast, adding to the collection of instances new instances generated by an expansion in our language involves special considerations.

These differences between a generalization and a collection of its instances are what create problems for the three most prominent formulations of deflationism. While some of these views do better than others in responding to the generalization problem, all three ultimately fail to account for truth’s generalizing role.

2. Horwich’s Minimal Theory

Horwich’s MT fails on this front because MT explains truth in terms of what is expressed by the collection of all the (uncontroversial) instances of (ES) (for all possible extensions of English), where these equivalence propositions are totally undervalued, individually brute axioms.⁴ Because MT understands truth as fundamentally a property of propositions, it provides no way to unify these axioms or anything we derive from them. Thus, while MT supplies for each claim like (1), an equivalent claim that is an instance of (3), it provides no way to bring these instances together, and thus, no generalization.

Horwich has responded to the generalization problem by claiming that, in the special case of propositions, we have a truth-preserving rule of inference akin to an omega rule in mathematics.⁵ Horwich’s omega-type rule allows us to conclude from the fact that each proposition (satisfying some condition,

⁵ Horwich (1998, pp. 22, 137). Horwich does not make the comparison to an omega rule; this idea stems from conversations with Bradley Armour-Garb.
e.g., being asserted by Corey) has some feature (e.g., truth), the general claim that every proposition (of that sort) has that feature. In other words, we can infer a generalization from the collection of its instances. Horwich admits that his inference rule is not logically valid, since it depends on matters beyond the scope of logic (e.g., the nature of propositions), but he claims that we find it plausible and that it captures an inferential disposition we have.\(^6\)

This reply, however, is unsatisfactory. To begin with, it involves substantive commitments regarding the nature of propositions, something at odds with what Horwich says elsewhere.\(^7\) More importantly, it seems not so much to address the difficulties MT faces with respect to the generalization problem as simply to deny them. Facts about the natural numbers justify an omega rule in mathematics. Until Horwich explains how his inference rule follows from the nature of propositions (and presumably this would be very different from why an omega rule holds in the case of numbers), it is just an ad hoc reply to Gupta’s objection. MT thus lacks an adequate account of truth’s generalizing function.

3. Brandom’s Prosentential Account

Brandom’s operator version of the Prosentential Theory (OP) does a slightly better job of accounting for truth-generalizations. OP explains the expression ‘is true’ as an operator that combines with sentence-nominalization expressions to form prosentences – sentences that, like pronouns, inherit their content from anaphoric antecedents (here, the sentence-tokening that has been nominalized).\(^8\) The sentence ‘it is true’ is thus a variable prosentence, each token of which inherits its content from whatever sentence-tokening the pronoun ‘it’ denotes there. The central feature of OP’s account of truth generalizations is an appeal to quantification-anaphora. Just as a quantifier serves as the antecedent of the pronouns (the variables of natural languages) in

\[
\text{(4) For every number, if it is divisible by 2, then it is even,}
\]

we can get a generalization like (3) by making a quantifier the antecedent of the pronouns in a sentence where the variable ‘it’ is part of a prosentence, for example.

8 Brandom (1994, Chapter 5). Making any sentences employing ‘is true’ itself a prosentence is how Brandom’s version of prosententialism differs from the classic presentation of Grover, Camp, and Belnap (1975), in which ‘it is true’ and ‘that is true’ are the only prosentences.

Deflationism and the Generalization Problem

(5) If Corey says it, then it is true.

The problem with this explanation, however, is that while the quantification employed in (4) looks like ordinary objectual quantification supplying objects from a domain as the values of the variables, that cannot be what is going on in Brandom’s account of (3). He takes the quantifier in (3) to supply items that are themselves the anaphoric antecedents for the prosentences that appear in (3)’s instances. But anaphora is a relation between expressions in use, so these items are not objects that the instances of (3) talk about. They are linguistic items filling in dummy variables in a sentence schema of the form

(6) If Corey says \(n \), then \(n \) is true.

This means the quantification in (3) is substitutional on Brandom’s account, rather than objectual, and this undermines the aim of explaining (3) as a genuine generalization.\(^9\)

One reason for thinking that substitutional quantification cannot supply genuine generalizations is that, as it is usually understood, substitutional quantification always comes with a particular substitution class. As a result, on Brandom’s view, the meanings (and thus perhaps the truth-values) of generalizations exploiting the truth-predicate would change as the language expanded and provided new substitution instances. Moreover, even if there were versions of substitutional quantification that could avoid this problem, Gupta’s logical gap would still arise, since deflationists understand universal substitutional quantification as just a means of encoding a (potentially infinite) conjunction of the instances of the schema following the quantifier. So, while Brandom’s account can bring all the instances of a truth-generalization together in a syntactic or logical sense, this still falls short of an actual generalization. Thus, OP also fails to account for truth’s generalizing function.

4. Field’s Pure Disquotationalism

Because Field’s Pure Disquotationalism (PD) also maintains that utterances (rather than propositions) are the basic truth-bearers, it could also achieve at least a syntactic unity of the instances of (3) by reading the main quantifier in (3) substitutionally. However, to avoid the defects just rehearsed, PD sticks with an objectual reading. Field’s alternative, somewhat technical, response to

9 Actually, for Brandom this does not distinguish (3) from (4), since, as part of his normative-inferentialist approach to meaning, Brandom endorses a substitutional interpretation of quantification generally. See Brandom (1994, pp. 434–435).
the generalization problem involves expanding our language to include sentential variables and schemata employing them. This would allow us to reason with these schemata themselves, rather than just with their instances. Thus, in generalizing on a claim like (1) we could formulate and reason with a schema like

\[(FG) \quad \text{If Corey says} \; 'p', \text{ then } p.\]

However, as Field recognizes, this move by itself is insufficient because all that (FG) gives us is the collections of its instances. In order to get genuine generalizations from the schematic variable strategy, Field stipulates that the following two rules of inference govern these variables:

i) a rule that allows replacement of all instances of a schematic letter by a sentence;
ii) a rule that allows inference of \((\forall x)(\text{Sentence}(x) \rightarrow A(x))\) from the schema \(A("p")\), where \(A("p")\) is a schema in which all occurrences of the schematic letter \(p\) are surrounded by quotes.\(^{10}\)

With these rules in place, the truth-predicate now serves its purpose. One of the schemata now in our language is that axiomatizing the notion of truth, the disquotational schema

\[(DS) \quad 'p' \text{ is true iff } p.\]

Reasoning with (DS) and (FG) together, we can derive a schema equivalent to the latter in which all instances of the sentential variable appear inside of quotation marks, namely,

\[(FG') \quad \text{If Corey says} \; 'p', \text{ then } 'p' \text{ is true.}\]

Field's rule ii) now generates the kind of generalization we want (provided we are willing to accept that sentences are the things people assert, believe, etc.), since it lets us infer claims like (3) from schemata like (FG').

While Field’s strategy seems to give us what we want, one worry about it is that incorporating schemata and sentential variables into our language is even more revisionary than reading existing quantifier and variable expressions substitutionally. The main problem, however, is that rule ii) basically amounts to an omega-type rule for sentences. While it would bridge the logical gap between a truth-involving generalization (about sentences) and a collection of its instances provided by reasoning with (DS), Field offers no motivation for having such a rule (other than the fact that it solves the generalization problem). Instead, like Horwich, Field simply assumes this rule is underwritten by the way we in fact reason, in this case with the logical devices underlying our uses of a disquotational truth-predicate. But again, this is really more just a denial of the generalization problem than a solution to it.

At this point the following thought might suggest itself: since an omega rule does apply to inferences about the numbers, perhaps we can construct a satisfying justification for Field’s omega-type rule by forging some link between sentences and numbers via the technique of Gödel numbering.\(^{11}\) The idea would be that, instead of using (DS), we axiomatize the notion of truth with the “Gödelization” schema,

\[(GS) \quad ['p'] \text{ is true iff } p,\]

where the ‘"..."’ functions as a device taking an expression to its Gödel number. By changing the quotation in schemata like (FG) to “Gödelization” (and rewriting Field’s rules for schematic variables appropriately), rule ii) would then take us from a collection of instances employing numeral-expressions to a generalization about all the referents of such expressions. This, then, might seem to justify this omega-type rule.

Two points, however, rule out this rescue attempt. First, Gödel numbering is a technique for assigning numeral-expressions to sentences; thus, the referents of these expressions are still sentences, not numbers. There only seems to be the sort of connection to numbers that might justify rule ii). Second, even if we could establish the needed connection to numbers, the appeal to Gödel numbering conflicts with the way Field must understand (DS) in order to give its instances the right modal and epistemic statuses. To make these equivalences necessary and a priori, Field must view quotation-names of sentences as involving computational typing (attaching an interpretation, in the sense of a computational or inferential role) rather than just an orthographic typing.\(^{12}\) Gödel numbering, however, provides an orthographic typing, so (DS) and the rules governing the schematic variables cannot be recast in terms of a Gödel numbering device instead of quotation-names (as Field understands them). An

\(^{10}\) Field (1994, p. 259).

\(^{11}\) This move is not even an option for Horwich, since he takes propositions rather than sentences as the basic truth-bearers.

\(^{12}\) Field now does this by using (ES) rather than (DS) as the schema axiomatizing the notion of truth. He can do this because of the understanding of that-clauses he now favors. According to this account (what Field calls "LV" in (2001, pp. 157–174)), that-clauses are just a means of picking out computationally (rather than orthographically) typed sentences of the speaker’s own idiolect. Thus, on Field’s view, (ES) is really the basis of a disquotational (rather than propositional) account of truth-talk.
appeal to Gödel numbering would thus do Field no good, and his rule for getting actual generalizations from collections of their instances remains unjustified. Field’s PD, therefore, also falls to the generalization problem.

5. Pretense to the rescue

So, the three best-known formulations of deflationism all fail to account for truth’s generalizing role. Lest deflationists despair, however, there is an alternative formulation of deflationism that succeeds where the prominent ones do not. This account views the notion of truth as part of a semantic pretense. The pretense approach is a recent, non-error-theoretic, fictionalist strategy that explains how speakers can use pretense-invoking utterances to make serious assertions about the world. This is a consequence of the special kind of pretense involved in semantic pretense.

The relevant kind of pretense is most familiar from children’s games of make-believe. The interesting aspect of make-believe is that some of what is to be pretended by participants in the game depends on the state of the world outside of the game. Games of make-believe involve rules that determine the way actual circumstances combine with the game’s stipulated pretenses to determine what else is to be pretended (that is, which further pretenses are prescribed).

The systematic dependency a game of make-believe establishes provides a mechanism allowing a speaker to make indirectly a serious claim about the world by making as if to say something else. I call claims that invoke pretense in order to make serious claims indirectly, partially pretend claims. So, an appeal to make-believe allows for, rather than undermines, the serious purposes served by a “way of talking.” And if a way of talking is problematic when taken at face value, understanding its claims as partially pretend might explain how it serves any serious purposes at all. We might thus solve certain philosophical problems by recognizing make-believe at work in ways of talking where we have not noticed it before.

13 I offer a detailed presentation of the main points of the account to follow in Woodbridge (2002). See Woodbridge (2001) for the full story.
15 A way of talking is a loosely bounded fragment of discourse (and thought) centered around some expression (concept) or family of expressions (concepts) — e.g., modality, numbers, truth — or around some mode of figure of speech — e.g., metaphor, irony, hyperbole.

Deflationism and the Generalization Problem

I claim this is the case with truth-talk. I take truth-talk to function in virtue of a game of make-believe governed by rules like the following.

I. It is to be pretended that expressions like “is true” and “is false” function predicatively to describe objects as having or lacking certain properties (called “truth” and “falsity”).
II. The pretenses displayed in an utterance of “(The proposition) that p is true” are prescribed if and only if p.
III. The pretenses displayed in an utterance of “(The proposition) that p is false” are prescribed if and only if ~p.

Rules II and III are schematic rules, each providing every possible instance of the given schema. These rules determine the real-world conditions under which particular attributions of truth or falsity make genuinely true claims indirectly. So, truth-talk is not automatically false, meaning this is not an error theory. Rule I shows that truth-talk involves pretense intrinsically; there are no pretense-free uses of the truth-locutions because their basic functioning involves pretense. As a result, truth-talk cannot be taken literally and thus cannot be said to be automatically literally false. These two points placate any initial worry that a pretense-based account of truth-talk involves an incoherent (error-theoretic) circularity.

The pretense view explains a basic instance of truth-talk like

(7) It is true that crabapples are edible

as follows. (7) belongs to the game of make-believe behind truth-talk. It invokes the pretenses that the expression “(the proposition) that crabapples are edible” picks out some object and that this object (made the referent of the pronoun “it” by the usual sort of anaphoric link) has the property the expression “is true” attributes. According to the make-believe, these pretenses are prescribed if and only if crabapples are edible. Thus, the serious claim made indirectly with (7) is just that made directly by

(8) Crabapples are edible.

Because I take truth-talk to involve the attribution of a unified property (in the context of a pretense, of course) my view is logico-syntactically conservative. The logical form of any instance of truth-talk is just what it appears to be. My view thus shares the advantage inflationary views have in accounting for the more interesting claims where truth-talk serves its real purpose: quantificational claims like

(3') Everything Corey says is true.
On my view, the logical form of claims like (3') involves objectual quantification (most likely restricted to propositions) and full-blown predication, describing the objects from the domain satisfying a particular condition (here, being said by Corey) as possessing a particular property (truth). Again, this all goes on only within a pretense, since I maintain there is no property of truth (and no propositions either, for that matter).

For the make-believe behind truth-talk to cover universally quantified truth-attributions like (3'), we must expand it beyond Rules I–III to include a rule like the following.

IV. The pretenses displayed in an utterance of the form \((\forall x)(Fx \rightarrow x \text{ is true}) \) are prescribed iff (the pretenses displayed in an utterance of the form \((\exists x)(Fx \& x = \text{ the proposition that } p) \) are prescribed \(\rightarrow p \)).

Since the right-hand side of Rule IV employs schematic sentence variables, it basically provides all the instances of the embedded schema. One potentially worry, then, is that this rule is also an omega-type rule. When we "semantically descend" into the pretense, Rule IV sanctions a generalization (something of the form \((\forall x)(Fx \rightarrow x \text{ is true}) \) like (3')) on the basis of a collection of claims like (1) and its ilk (instances of the schema \((\exists x)(Fx \& x = \text{ the proposition that } p \rightarrow p') \)). While technically these claims are not instances of the generalization, each one is equivalent to some instance because of the equivalence Rule II establishes between the instances of \(p' \) and 'that \(p \) is true'. We might thus view Rule IV as an omega-type rule that includes the denominalization Rule II sanctions.

Even if this reading of Rule IV is legitimate, unlike Horwich's and Field's appeals to omega-type rules, the stipulation of such a rule as part of a pretense needs no further justification. We can stipulate whatever rules we wish to govern a make-believe. So, with respect to Rule IV, there is no worry about how the nature of propositions or the nature of some real property of truth might ground the inference rule provided. Since the notion being governed is a pretense, there is no problem with claiming that this is just how we are to reason with it.

Another possible worry about extending the make-believe behind truth-talk with Rule IV is that this requires taking utterances with the logical form

\[
(9) \quad (\exists x)(Fx \& x = \text{ the proposition that } p)
\]

17 There is also an analogous rule governing the segment of truth-talk involving quantificational attributions of falsity. We can obtain this rule by replacing 'is true' in the mentioned formula on the left-hand side with 'is false' and 'p' in the consequent on the right-hand side with '~p'.

Deflationism and the Generalization Problem (e.g., 'What Corey believes is that crabapples are edible') as pretense-involving. The full story about quantificational truth-talk thus includes a pretense view of proposition-talk. The need for such an account in the present context is hardly surprising, given the tight connection between the notions of truth and proposition. However, a pretense view of proposition-talk is not an ad hoc addition this account of truth-talk requires for consistency. There are independent reasons for thinking that semantic pretense provides the best explanation of our talk putatively about propositions (e.g., in attitude ascriptions).\(^\text{18}\)

My preference is for a fairly radical version of this sort of view, one that specifies the possession of certain use-features like inferential or conceptual role as the real-world conditions prescribing a pretense that something (e.g., an utterance) is related (in some way) to some proposition (pretend-)denoted by a that-clause.\(^\text{19}\) Essentially what this amounts to is a non-truth-theoretic account of content (or better, of attributions of content, i.e., "meaning-talk") in which an appeal to pretense explains both how we manage to talk about the use-features in question with utterances that seem unsuited to the task, and the utility of doing so. Given that any version of deflationism must endorse a non-truth-theoretic account of meaning, any worries this generates will not be peculiar to my formulation.

The main advantage the pretense view offers over other formulations of deflationism is its ability to account for truth-talk's special generalizing role without attributing to it any non-standard logical functioning involving devices like substitutional quantification and sentential variables. Of course, in stating the rules that govern truth-talk, including those governing quantificational instances, I have had to use schematic sentence variables to express the real-world conditions prescribing the pretenses truth-attributions invoke. But on my view this is simply due to the fact that the only way to express these conditions in natural language is indirectly, with pretense-employing utterances of the very sort that these parameters explain. Truth-talk provides a surrogate for these non-standard logical devices by employing standard logical devices such as predication and objectual quantification in the context of a particular pretense.

The non-standard devices in question do not actually operate in the talk's logical functioning. The pretense view thus circumvents a serious problem confronting some of the current formulations of deflationism.

\(^\text{19}\) I develop an account of this sort in Woodbridge (2003).
6. Concluding Remarks

The pretense view of truth-talk avoids Gupta’s objection and resolves the generalization problem because it postulates no substitutional quantification or schematic sentence variables at work in truth-talk’s actual functioning. The pretense also covers any future expansions of our language by including the pretense of propositions. It is part of the make-believe that language expansions simply “reveal” more objects (propositions) already in the domain of the objectual quantifier in a claim like (3’). Moreover, my view explains not only why truth-talk comes in the form it does, but also how these claims, employing nothing but familiar logical and linguistic devices like objectual quantification and predication, provide a surrogate for certain complex, non-standard logical devices like substitutional quantification and sentential variables. Furthermore, my account of this surrogate explains how using it avoids certain limitations direct appeals to such devices would involve.

The pretense view of truth-talk thus skirts the logical pitfalls confronting the versions of deflationism currently available in the literature, offering deflationists a way to make good on their goal of explaining the notion of truth in terms of its logico-linguistic roles rather than in terms of a substantive property.

References

